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Abstract-The relationship between heat dissipation of individual clusters and local heat transfer to a 
surface in a circulating fluidized bed has been established based on a probabilistic cluster renewal model. 
Variations of local particle convective heat transfer coefficient with length are predicted based on the 
model. A simplified model assuming an identical contact distance of clusters leads to explicit expressions 
for the local and average particle convective heat transfer coefficients, which approximate the more rigorous 
model for most cases of practical interest. Previous experimental data for heat transfer to a membrane wall 
are in good agreement with mode1 predictions. Information on the wall contact resistance and mean cluster 

contact distance is also obtained from the model in combination with the experimental data. 

INTRODUCTION 

Compared to the long history of the traditional bub- 
bling fluidization, circulating fluidized beds (CFB) are 
a recent development. Considerable efforts have been 
made to understand and predict the performance of 
heat transfer between a circulating fluidized bed and 
a fixed surface as reviewed by Grace [1, 21. This kind 
of heat transfer is quite complicated, and usually con- 
sidered to consist of convective and radiative com- 
ponents. In mos,t models proposed by various 
researchers the convective transfer of the dense phase 
has been based on transient conduction from the solid 
aggregates (clusters), a model inherited from the 
packet theory for bubbling fluidized bed heat transfer. 
The theory was originally proposed by Mickley and 
Fairbanks [3], who derived an expression for the tran- 
sient convective component of the solid packet as 

By integrating equation (1) over time, a time-averaged 
coefficient of this component can be obtained 

h,,(t) = 2 * h, (0. (2) 

The theory was improved later by Baskakov [4] to 
incorporate a thermal contact resistance, R,, between 
the solid packet and wall into the model, which led to 
following transient and averaged heat transfer 
coefficients from the packets 

h,,(t) = &exp (&)erfc (7&E) (3) 

t On leave from Shandong Institute of Civil Engineering, 
Jinan, P. R. China 250014. 

$ Author to whom correspondence should be addressed. 

- h,,(t) = 

(4) 

These expressions are somewhat inconvenient for 
engineering calculations due to the presence of the 
complementary error function term. Utilizing the con- 
cept of resistances in series, equations (3) and (4) are 
often approximated by 

ha = 
1 

(5) 

R,+ ?- J kcpc 

with the worst deviations from the analytical solution 
of equations (3) and (4) being about - 16% for equa- 
tion (5) and -4.8% for equation (6) respectively. 
Other relations for packet transient conduction with 
various boundary conditions have been summarized 
by Gelperin and Einstein [5]. Recent experimental 
evidence [6] has shown that packet-type transient 
decay models describe only part of traces of local 
instantaneous heat transfer to horizontal tubes in bub- 
bling fluidized beds. 

In both commercial and laboratory CFB units there 
exists a core-annulus structure, where solid particles 
are carried upward in a dilute central core and con- 
gregate to form clusters or streamers and descend in 
a much denser annulus layer near the containing wall 
of the riser. As they slide downward along the wall, 
the clusters may maintain contact with the wall for a 
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NOMENCLATURE 

: 
specific heat of clusters X coordinate 

hP 
mean particle diameter X’ height at which cluster first makes 
heat transfer coefficient contact with the wall 

k, effective thermal conductivity of X0 length of adiabatic section of wall 
clusters x x/L, dimensionless coordinate 

k, thermal conductivity of gas X0 x0/L, dimensionless parameter 
K dimensionless parameter, given by Z x-x’, integration variable. 

equation (13) 
L mean contact distance of clusters 
I distance cluster has been in contact 

Greek symbols 

with the heat transfer surface 
6 ratio of gas gap width to particle 

diameter 
n parameter in gamma distribution, 

given by equation (7) 
e parameter in gamma distribution, 

NU h - R,, Nusselt number 
given by equation (7) 

P density function of probability P density of clusters 

distribution 
d standard deviation of probability 

RV thermal contact resistance 
distribution. 

s contact distance of clusters 
S survival function, given by equation Subscripts and superscript 

(9) t transient model 
t time X local model 
u descending velocity of clusters _ averaged. 

limited period of time, and then either drift away from 
the wall or disintegrate. When there is a heat transfer 
surface on the wall, the clusters contacting it undergo 
transient conduction and exchange heat with the wall. 
While the analogy between the bubbling bed and CFB 
has been helpful, heat transfer to outer vertical walls 
in circulating (fast-fluidized) beds differs significantly 
from that to immersed tubes in bubbling beds. One 
feature reported by various researchers, e.g. Wu et al. 
[7], is the significant effect of the length of heat transfer 
surfaces. This can be explained qualitatively by equa- 
tions (1) and (3), because a longer heat transfer sur- 
face tends to mean a longer contact time of the clus- 
ters. If, for simplicity, it is assumed that all clusters 
descend at a constant speed, U, a rational approach to 
this problem is to take the time for the clusters to slide 
along the surface height as the contact time, or for 
surfaces which are long enough that renewal is 
expected on them, to assume a characteristic residence 
length and take the time for clusters to traverse this 
distance as the contact time in evaluating their con- 
vective heat transfer. Glicksman [8] proposed a model 
in which a sheet of particles was assumed to accelerate 
from rest to a maximum velocity so that the contact 
time could be estimated. 

All these models of cluster convective heat transfer 
trace the movement and thermal history of individual 
clusters, rather than considering fixed locations. 
Therefore they are transient heat transfer models 
rather than ‘local’ ones. While they can predict the 
general trend and the right limits of heat transfer 
coefficient for very short and very long surfaces, these 
models fail to reveal an accurate picture of the vari- 

ation of local heat transfer coefficient with length. The 
model proposed by Wu et al. [9] tried to take this 
effect into account on an analytical basis. In this model 
the clusters were supposed to contact the surface at 
its top level and, after traveling a characteristic 
distance, to mix with other particles in an outer annu- 
lar layer and reform. Although this model indicates 
the general trend of the surface length effect and gives 
reasonable order-of-magnitude estimates of the heat 
transfer coefficient for representative measured results 
after its parameters have been fitted using exper- 
imental data, the non-monotonic and non-smooth 
variation of the heat transfer coefficient with length 
resulting from the assumption of stage-by-stage mix- 
ing is unrealistic. In this paper we seek an improved 
heat transfer model where clusters reach the wall at 
different positions and travel different distances. 
While this representation is not expected to be perfect, 
it provides a more realistic basis for prediction than 
previous models. 

LOCAL TRANSFER MODEL 

Here we present a model for particle convective 
heat transfer. The contributions of radiation and gas 
convection can usually be treated separately as addi- 
tive components [2, lo]. For the particle convective 
transfer the following assumptions are adopted. 

1. The circulating fluidized bed is contained in a 
riser with a continuous wall consisting of an iso- 
thermal heat transfer surface, with an adiabatic one 
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(4 

s: contact distance 1: heat transfer distance 

Fig. 1. Heat transfer configuration for (a) cluster contacting 
wall above the heat transfer surface and (b) cluster contacting 
the wall at some distance below the top of the heat transfer 

surface. 

above it of height x,, as shown in Fig. 1. The coordinate 
origin is located alt the top of the heat transfer surface. 
The specific case x0 = 0 corresponds to absence of the 
adiabatic section Iof the wall. 

2. The clusters make contact with the wall evenly 
throughout both wall sections, with a uniform prob- 
ability of arrival at any height. Once clusters reach the 
wall, they descend along the wall at a constant 
velocity, u. The transient heat transfer coefficient of 
each cluster can be expressed as a function of its con- 
tact time, h,(t), given by equation (3). 

3. The contact lifetime and contact distance, s, of 
individual clusters from their initial contact with the 
wall to their disintegration or inward migration is 
random, conforming to a probability distribution with 
a density function p(s). Having been found useful in 
describing a wide range of lifetime probabilities, a 
gamma distribution is adopted as a first approxi- 
mation. The gamma distribution has a density func- 
tion 

PM = 

psn- I e-“” 

r(n) 
if s>O 

1 (7) 

P(S) = 0, if s<OJ 

with both parame:ters 0 and n greater than zero, and 

s 

co 
T(n) = s”-’ ems ds. (8) 

0 

For an integer n, equation (8) reduces to 
T(n) = (n- l)! 

The gamma dhitribution given by equation (7) has 
a mean of L = n/B and variance of cr2 = n/02. In the 
special case of n I= 1 the gamma distribution reduces 
to an exponential distribution, which is less suitable 
for this situation. In the absence of knowledge of 
the parameter n lbased on experiments, we can only 
estimate n > 2 at present. 

The ‘survival function’ S(z) of a certain density p (s), 
defined as 

S(z) = 
1 

m p(s) ds 

= l- 
s 

‘p(s)ds 
0 

(9) 

indicates the probability for the clusters to survive 
after traveling a distance z along the wall. In the case 
of gamma distribution with n > 2, the survival func- 
tion will be less than 0.01 for z/L > 1+3.5/ Jn. This 
means that there is little chance that a cluster will 
traverse a distance, say, of three times the mean dis- 
tance for n > 2. 

Heat is transferred to a certain differential area 
located at x by various clusters with different contact 
and conduction experiences. Suppose a cluster starts 
its contact with the wall at x’. The probability for it 
to pass the area of interest at x is given by 

s 

Cc 
P= ~(4 ds. (10) 

I--x’ 

When this cluster reaches the area of interest, it has 
traversed a heat transfer distance of I= x for x’ < 0, 
or I = x-x’ for x’ > 0. Heat is then transferred with 
an instantaneous coefficient h,(x/u) or h,[(x - x/)/u] 
as described by the transient model. The local heat 
transfer coefficient h, (x) is determined by averaging 
contributions of all these clusters, weighted with their 
contact probability, i.e. 

M-4 = 

x m ss Pan 
-x0 x--x’ 

(11) 

Substituting equations (3) and (7) into equation (1 l), 
we can see that the local heat transfer coefficient is a 
function of the location x, as well as other parameters, 
i.e. 

h, =f(x, x0, u, R,, k,, PC, 6 n). (12) 

The wall contact resistance R, depends mainly on the 
particle size, while the effective thermal properties 
k,, p and c are functions of cluster voidage. These 
variables are expected to play important roles in deter- 
mining the heat transfer performance. The cluster life- 
time distribution parameters 0 and n likely depend 
upon geometric configuration and hydrodynamic 
conditions. 

The parameter 0 = n/L has units of reciprocal 
length. Alternatively, use of the expected contact dis- 
tance, or the mean of the distribution, L, as an inde- 
pendent parameter is more convenient in engineering 
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Fig. 2. Heat transfer coefficients predicted by transient and 
local models for n = 2, K = I, A’, = 3. 

applications. With L as a characteristic length we 
define dimensionless parameters 

(13) 

K is the ratio of the characteristic conductive resist- 
ance inside the cluster to the contact resistance on 
the wall. NU is a special Nusselt number with limits 
between 0 and 1. This definition helps to reduce the 
number of dimensionless parameters. Equation (12) 
can now be reformulated as a dimensionless 
expression 

NM, = F(X,X,,K,n). (14) 

The average heat transfer coefficient over a surface 
from 0 to x can be obtained by 

- s 
h,=i xh,dx 

X 0 

or 

Nu, dX. (16) 

DISCUSSION 

Figure 2 shows typical local and average particle 
convective heat transfer coefficients predicted by the 
transient model, i.e. equations (3) and (4), and this 
model. It can be seen that the heat transfer coefficients 
obtained by this model are greater than those from 

0 1 2 3 

X=x/L 

Fig. 3. The effect of x0 on the local heat transfer coefficient 
for n = 4, K = 1. 

the transient model except for x = 0, where both mod- 
els give Nu = 1. The difference can be accounted for 
by the fact that not all the clusters come into contact 
with the surface at its very top ; instead there is con- 
tinual renewal of the clusters reaching the wall. More- 
over, while the transient theory predicts that cluster 
convective transfer diminishes to zero as the surface 
extends to infinity, according to the present model 
both the local and average heat transfer coefficients 
approach a constant value with increasing surface 
length. This is clearly more realistic. 

Injuence of the adiabatic section length x0 
As mentioned above, few clusters travel along the 

wall an unusually long distance, say, three or more 
times the mean distance. Therefore local heat transfer 
is hardly influenced by clusters which achieve contact 
with the wall high above the location under con- 
sideration. Some asymptotic limits of heat transfer 
can therefore be derived. 

The heat transfer coefficient for long surfaces in 
CFB units is of great importance for industrial appli- 
cations. For x >> L, both local and average heat trans- 
fer coefficients approach the same limit, which is inde- 
pendent of x0. On the other hand, x0 does have a 
certain influence for short surfaces whose lengths are 
less than, or of the same order as, the cluster mean 
contact distance. Computation has also shown that 
increasing the length of adiabatic sections beyond 
three times the mean contact distance causes negligible 
change in heat transfer to the surface ; in this case x,, 
can be simply regarded as infinity. These features of 
the effects of x0 are shown in Fig. 3. In most practical 
cases for short surfaces, such as small heat transfer 
probes installed in an insulated wall, there are large 
adiabatic areas around them. Then only the extreme 
of x,, = co is of practical importance. For many pur- 
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0.8 
________ n = 4 -----.A .-.._...... n = 2 

1 

a=.= r.- riir_*.< 

X=x/L 

Fig. 4. Effect of n on the average heat transfer coefficient for 
X0 := 3 and two values of K. 

poses, the influence of x,, can therefore be simplified 
by focusing on the two extremes, x0 = cc and x0 = 0. 

Influence of contact distance variance 
For the gamma distribution we have 

0 1 ~=- _ _ (17) 
L Jn 

so that the parameter n is related to the variance. The 
larger the parameter n, the more closely the cluster 
contact distances converge in a relative sense around 
their mean. The extreme of n approaching infinity 
turns the probabilistic distribution of the contact dis- 
tances into a determinate one, which means that all 
clusters contact the wall for an identical distance, L. 
Average heat transfer coefficients are plotted in Fig. 4 
for different values of n. They indicate, fortunately, 
that the parameter n has very little influence for 
x < L/2, and only a minor influence on the particle 
convective transfer for x > L/2. The greatest relative 
difference occurs for large X, and results for this case 
are plotted in Fig. 5. Computation has shown that the 
maximum difference between the heat transfer 
coefficients is only 7% for the two extremes n = 2 and 
n = CO, with n = CO resulting in the highest rate. The 
minor significame of n can be accounted for by the 
fact that, when the contact distances diverge from 
their mean, the decrease in transfer from clusters tra- 
veling longer disiances is partially offset by the gains 
from those traveling shorter distances. The minor 
influence of II indicates that the distribution of the 
contact distances, is of secondary importance to the 
heat transfer. Due to lack of reliable information on 
the distribution of the contact distances, the following 
discussion focuses on the special case of determinate 
contact distance, i.e. n = CO. Simpler approximations 
of the previous model can then be derived. 

K=( L/R$k,pcu)‘” 

Fig. 5. Cluster convective heat transfer for very long surfaces 
(XX 1). 

Determinate contact distance model 
We consider here only the influence of the mean of 

the cluster contact distances, while restricting their 
variance to zero. As discussed above, the influence of 
the variance is of secondary importance. Hence this 
simplified model can be of practical value for general 
situations with a contact distance distribution. When 
the probabilistic model reduces to the determinate 
one, i.e. for n = CO, we have 

x 

s 
p(s) ds = 0, for x < L 

0 
(18) x 

s 
p(s)ds= 1, forx> L 

0 1. 

Then, with a coordinate transformation z = x-x’ and 
with X0 2 1, equation (11) reduces to 

h,(x) = $q (+L-x)+[h, (;)dz] 

= (I-~)*h,(~)+~*&(~), forx<L 

(19) 

h,(x) = ; Lh, z dz 
I 0 0 u 

=A, 4 0 u ’ 
forx > L. (20) 

h, and h; can be obtained from any appropriate packet 
transient conduction model, e.g. equations (3) and 
(4). For the initial section with x < L, the local heat 
transfer is affected by two kinds of clusters. Clusters 
coming into contact above the heat transfer surface 
experience an identical instantaneous rate of h,(x/u), 
while those making contact with the wall within the 
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transfer section have different rates of transfer at this 
location. The average effect of the latter is just like 
the time-averaged heat transfer coefficient of a single 
cluster traveling from the top of the surface down to 
this location. Beyond this initial section, i.e. for x > L, 
the cluster renewal reaches dynamic equilibrium. The 
local heat transfer coefficient then becomes inde- 
pendent of the length coordinate. In this situation the 
local heat transfer coefficient is equal to h,(L/u) instead 
of h,(L/u). 

For x0 = 0 the local heat transfer coefficient is fur- 
ther simplified to 

h, = h, 5 ) 0 forx < L; (21) 

h,=h; 4 0 u ’ 
forlc 2 L. (22) 

Substituting equations (3) and (4) into the above ex- 
pressions and making them dimensionless, we obtain 

Nu, = (1 -A’) exp (K2X) aerfc (K$?) 

+ $ exp (K’X) *erfc (Kfi) + 2 Kfi- 1 
& 1 

forXO b 1,X< 1 (23) 

Nu, = -& exp (K’X) *erfc (Kfi) 

+LKJk-l , 
& 1 for X0 = 0, X < 1 (24) 

Nu, =$ exp(KZ)*erfc(K)+lK-l J;r 1 , 
for X> 1. (25) 

Of greater importance in applications, the length- 
averaged heat transfer coefficient can be obtained 
according to equation (16) 

NM, = $X exp (K’X) *erfc (K@) 

.(2+K2-K’X)-K2-2 

, 

forX, 3 1,X< 1 (26) 

Nu, = exp(K’)*erfc(K)*(2-K2) 

1 
++ exp(K2)*erfc(K)+1K-l , & 1 

for-Y, 2 1,x> 1. (27) 

0.8 

d OB 
c 

” 
z 
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0.2 

0.0 I , I . I . I . 
0.0 0.2 0.4 0.6 0.8 1.0 

X=x/L 

Fig. 6. Local heat transfer coefficient according to the deter- 
minate contact distance model for X0 > 1, 

_._ 
0.0 0.2 0.4 0.6 0.8 1.0 

X=x/L 

Fig. 7. Local heat transfer coefficient according to the deter- 
minate contact distance model for X0 = 0. 

It can be seen that the dimensionless heat transfer 
coefficient Nu, = h; R, turns out to be a function of 
three dimensionless parameters, i.e. X, X0 and K. For 
X0 b 1, the local and averaged Nusselt number is 
determined only by X and K. From its definition we 
know that K, the ratio of the characteristic conductive 
resistance inside the cluster to the contact resistance 
on the wall, represents the combined effects of R,, 
L and the thermophysical properties of the cluster. 
Computed results are plotted in Figs. 68 for different 
values of K. 
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Fig. 8. Average heat transfer coefficient according to the 
determinate contact distance model for X0 > 1. 

COMPARISON OF MODEL WITH EXPERIMENTAL 

RESULTS 

Few detailed experimental studies on local heat 
transfer coefficient variation with length are available. 
The experimental results for a membrane wall 
reported by Wu ei al. [7] were chosen to compare with 
model prediction. For this purpose the determinate 
contact distance model presented above is employed 
due to its simplicity. At this stage radiative heat trans- 
fer is assumed negligible for the bed temperature of 
407°C. The average cluster voidage and the fraction 
of wall covered by clusters were evaluated according 
to relationships suggested by Lints and Glicksman 
[I 11. Non-linear least square fitting was then used to 
evaluate the dimensionless parameter K as well as the 
wall contact resistance R, and mean cluster contact 
distance L. From these results the product k,pcu can 
also be estimated from the definition of K, equation 

(13). 
The interface contact resistance R, is commonly 

expressed in terms of the width, &I,, of a gas gap 
required to give the same resistance, i.e. 

Theoretically, R, can be fitted directly to experimental 
data. However, the fitting led to a very small R, value 
(6 < 0.01) relative to previous work in bubbling and 
circulating beds, where 0.1 < 6 < 0.4. Fitting results 
with 6 = 0.4, 0.1 and 0.01 are shown in Fig. 9. 
Although the fit with 6 = 0.01 (solid line) gave the 
best fit, the fit is still reasonable with 6 = 0.1, a value 
often used for bubbling fluidized beds. Some 
researchers [9,11] have suggested a larger contact 
resistance for CFB on the basis of experimental 

100 - 

50 I 

0 500 1000 1500 

X (mm) 

Fig. 9. Comparison between experimental heat transfer 
coefficients measured by Wu et al. [7] on a membrane wall 
and predictions of the determinate contact distance model 
with fitted parameters. For solid line 6 = 0.01, R, = l/l8 000 
m* K W-l, K = 290 and L = 2.86 m; for dotted line 6 = 0.1, 
R, = l/1800 m2 K W-‘, K = 28.2 and L = 3.18 m; for 
dashed line 6 = 0.4, R, = l/450 m2 K W-‘, K = 6.34 and 

L = 4.87 m. 

measurements with 6 being around 0.4. However, 
6 = 0.4 (dashed line) gave a less satisfactory fit here. 

The computed average cluster convective transfer 
coefficient for a small (10 mm long) probe can be less 
than 45% of l/R,, with R, fitted as above (6 = 0.1). 
The greater the K, i.e. the smaller the R,, the sharper 
the drop in the heat transfer coefficient for the initial 
section of the surface, as shown in Fig. 8. This may 
have caused overestimation of R, in some exper- 
iments. An improved fit was evident for most values 
of R, when the first data point (x = 130 mm) was 
excluded. This may be because of extra heat absorp- 
tion by the inlet pipe and/or disturbance at the junc- 
tion between the top of the membrane wall and the 
refractory above in the experimental layout. The 
values of U, the particle velocity of descent at the wall, 
which correspond to the fitted values of K and L, are 
1.07, 0.57 and 0.48 m s-’ for 6 = 0.4, 0.1 and 0.01, 
respectively. These values are close to the range of 
values determined experimentally, which typically 
range from about 1 to 1.8 m s-’ [12]. 

There are very few data available which could per- 
mit mean cluster contact distances to be derived. The 
model presented above provides a feasible approach 
to this problem through measuring heat transfer 
coefficient variation with length. The fitting for the 
membrane wall data suggests a mean contact distance 
in excess of 3 m. Such long lengths could be explained 
by the shielding effect of membrane walls, which hin- 
ders renewal of clusters sliding downwards along the 
fins [2]. When more experimental data are available 
for both smooth and membrane walls, the information 
on the mean cluster contact distance can be used to 
study the influence of the wall geometry on hydro- 
dynamics in the wall vicinity. 
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CONCLUDING REMARKS 

Particle convective heat transfer in circulating flu- 
idized beds occurs due to solid streamers, which, 
according to their thermal history, have different tem- 
peratures on their contact interfaces and, hence, 
different transfer potentials. While previous models 
tracing the thermal history of the clusters have pro- 
vided a basis for this kind of heat transfer calculation, 
they have failed to provide accurate insight into the 
local transfer rate. The ‘local’ models presented here 
are based on the weighted average of contributions of 
various clusters; a clear link between the ‘transient’ 
models and ‘local’ models has been derived. Both local 
and area-averaged particle convective heat transfer on 
surfaces of all lengths can then be predicted. The 
model which assumes that cluster contact distances 
conform to a certain probabilistic distribution depicts 
cluster heat transfer more realistically than previous 
models. While the magnitude and dependence of the 
contact distance variance remain to be investigated, 
computer simulation has indicated that this variance 
is of such minor significance that the heat transfer 
coefficients vary within only 7% as the parameter n 
varies over a vast range from 2 to infinity. This indi- 
cates that it is the mean of the cluster contact distances 
rather than their distribution that primarily deter- 
mines the particle convective heat transfer. The sim- 
plified determinate contact distance model, which 
ignores the contact distance distribution, is therefore 
usually adequate for practical purposes. Explicit func- 
tional relations for both local and area-averaged heat 
transfer coefficients can be derived from this simplified 
model. 

Measurements of local or average heat transfer 
coefficients along heat transfer surfaces can be used 
to estimate unknown parameters R, and L in the 
model. Here the model was fitted to experimental 
results for a membrane wall. Further tests and study 
are needed to obtain a better understanding of the 

cluster renewal and its influence on heat transfer, as 
well as to make allowance for combined conductive 
and radiative heat transfer at higher temperatures. 
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